
 

Fast & Slow Thinking Machines 
A Proposal for Dual-Process Reasoning in Machines



Fast and Slow Thinking Machines

A Proposal for Dual-Process Reasoning in Machines
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Abstract

A machine which rationally reasons like humans sounds like science fiction and
is far from becoming part of everyday life. But the demand and necessity for ex-
plainable artificial intelligence which does not “decide” / “act” like a black box,
but can explain its processes and reason about its decisions and judgements,
strongly increases. In cognitive science, reasoning is also a currently strongly
researched topic. The most dominant model at the moment is the dual-process
theory, which attempts to combine the previously widespread symbolic, heur-
istic and probabilistic approaches. Processes of type 1 are fast, but biased,
unconscious and strongly contextualised, whereas processes of type 2 are slow,
conscious, controlled and unbiased. This paper proposes how machine reasoning
on the basis of this dual-process theory could look like. The greatest di↵erence
to current attempts in machine reasoning is that the probabilistic black-box-
like algorithms are accepted as processes of type 1. Future research is required
concerning the transition and interplay between the processes and, if existent,
the monitoring process controlling both processes and their interaction, to build
a foundation for a successful implementation for machine reasoning.
Keywords: dual process theory; machine reasoning; logic reasoning; probab-
ilistic reasoning; recognition; cognition
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1 Introduction

Recently, the attempts to artificial intelligence (AI) and general AI (GAI) have
focussed more and more on reasoning because current implementations of AI systems
lack explainability, interpretability and accountability (Cyras et al., 2020, 4; Garcez
et al., 2019, 1; Lin et al., 2019, 1; Zellers et al., 2019, 6727). The research of explainable
AI (XAI) aims to make AI systems more understandable and acceptable to other
users – humans as well as other machines. In the first wave of AI research, the focus
was on rule-based systems, also called good old fashion AI (GOFAI) (Duan et al.,
2020, 1). The second wave focussed more on expert systems and statistical learning.
Both major approaches failed to be understandable, traceable and at the same time
e�cient. The decision processes are often referred to as black boxes (Cyras et al., 2020,
3). Thus, a machine who could reason and explain its decisions is desired. Therefore,
research of the human phenomenon of reasoning is a good basis to advance machine

reasoning (MR) – as machine learning (ML) was inspired by human learning as well.
Both fields aim to “computationally mimic abstract thinking” (Cyras et al., 2020, 3)
but have almost been advanced separately (Zhou, 2019, 1).

There is an interesting parallel between the history of machine reasoning and
cognitive-psychological / -philosophical research of reasoning: in the beginning of
reasoning (or Judgment and Decision Making (JDM)) research, the focus was on lo-

gical approaches like first order logic reasoning and then turned towards probabilistic
approaches and heuristics (Baron, 2014, 138f.). No approach could yet on its own
explain human reasoning behaviour. A very recent kind of theories are called Dual-

Process Theories (DPT), which combine two di↵erent types of processes (Thompson,
2009, 171): a “fast and unconscious system 1 (S1)” and a “slow but thorough and
conscious system 2 (S2)”. Although there is a strong debate about the exact dis-
tinction between the two process types1, there is a consensus that the first system is
rather fast and requires few cognitive resources whereas the second system is slower
but allows assessing and estimate decisions / actions (Pietzko, 2020).

1.1 Relevance

As outlined before, one reason to occupy oneself with machine reasoning is that
current AI systems lack explainability. But another aspect is acceptance and the ease
of use, as well as the endeavour to create socially cooperating multi-agent systems or
autonomous agents (Cyras et al., 2020, 4). Reasoning would empower machines to
make assumptions about social interaction (Zellers et al., 2019, 6727), comprehension,
understanding physics (Zellers et al., 2019, 6727), situation prediction, commonsense
(Duan et al., 2020, 2; Lin et al., 2019, 9) and improve human-robot interaction (Lin
et al., 2019, 1). Furthermore, reasoning allows humans to go beyond perception and

1I agree with some researchers that the usage of the term systems suggests two distinct entities,
which is misleading. In the following, I will only use the terms process of type 1 (P1) and process
of type 2 (P2) because the transition between them seems to be flowing. Furthermore, DPTs are
rather descriptive than normative and thus I accept the uncertainty this descriptive nature entails.
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contributes to the “e↵ectiveness and reliability of communication” (Mercier and Sper-
ber, 2011, 58, 71f.). It is “often seen as a crucial driver for the real-world deployment
of trustworthy modern AI systems” (Cyras et al., 2020, 4), but also as the “bottleneck
of GAI” (Lin et al., 2019, 1).

In social settings, reasoning can also accelerate work because it divides cognitive
load – it works by mutual verification: instead of checking one’s own arguments and
hypothesis all the time, other persons find flaws during communication (Mercier and
Sperber, 2011, 73). This process improves knowledge and leads to better decision
making (Mercier and Sperber, 2011, 57) – a task which will also be relevant for
machines in future. Current systems are able to recognize and classify, but they still
lack the ability to understand (Zellers et al., 2019, 6720).

The seamless integration of ML and MR would allow for advanced intelligent
technologies to emerge – ML as a data-driven process with a focus on recognition
and perception and MR as a knowledge-driven process, focussing on cognition (Zhou,
2019, 1). Reasoning and learning are essentially associated with intelligence (Bottou,
2014, 133). To complete these technologies, a last step concerning meta-cognitive
processes like the influence of knowledge on learning and recognition has to be taken.
It is a key competence which manifests itself in a reflective system (Ricco and Overton,
2011, 122).

1.2 Argumentative and Epistemic Goal

The central question and epistemic goal is to outline what we take to be the
current state of machine reasoning and reasoning research to develop suggestions
for dual-process machine reasoning (DPMR). The dual-process approach is chosen
as basis, because it is very descriptive and thus comes closest to human reasoning,
although this automatically implies challenges for the transfer to computationally
realisable models and algorithms. Especially, since the exact distinction and change
between processes is unclear. Furthermore, dual-process models are the currently
most acknowledged approach.

To develop suggestions for DPMR, first, current theories of reasoning and decision
making will be studied, focussing on DPT and the distinction and transition between
the two process types. Then, current computational approaches to MR are outlined,
taking a closer look at the approaches. This, subsequently, allows developing a list
of suggestions for machine reasoning. Nevertheless, these are only a theoretical de-
scriptive proposals and there still is a long way to go considering the current level of
research. But they o↵er a starting point for discussion of how to realise the connection
of type 1 and 2 processes of reasoning in machines.
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2 Theories of Reasoning and Decision Making

As outlined in the introduction, there are basically three main systems in JDM
and reasoning research (Bottou, 2014, 138f.): first order logic reasoning – also called
symbolic reasoning (SR), probabilistic reasoning (PR), heuristic reasoning (HR), dual-
process theory. There are more explanations of how reasoning works like causal reas-
oning, Newtonian mechanics, spatial reasoning or non-falsifiable reasoning systems,
etc., but they are less hotly debated in recent history or concern only a specific ap-
plication of reasoning.

The oldest and prevalent theory stemming from philosophy is logical / symbol
reasoning. Since Aristotle, rationality has been considered to distinguish the homo
sapiens from animals (Knau↵ and Spohn, 2021, 1). Although e.g. first order logic
reasoning is very expressive and can be translated to natural language (thus it is
understandable), it is insu�cient because not every detail from natural language can
be translated to logical statements (Bottou, 2014, 138). Given the assumption that
rational is, if humans behave according to the reasoning system underlying human
reasoning, SR fails since humans tend to systematically violate logical rules which
would be very irrational behaviour (Oaksford and Chater, 2001, 349). One strategy
to avoid this dilemma is to follow Chomsky, that rationality only is a competence

and the performance of it might be defective. Another strategy is to reason that
symbol reasoning is the wrong normative standard: people seem to reason with sound
logical reasoning systems, but are restricted by cognitive limitations, which makes a
probabilistic approach interesting (Oaksford and Chater, 2001, 349).

Probabilistic reasoning can be described as a “space of models formed by all
the conditional probability distributions associated with a predefined collection of
random variables” (Bottou, 2014, 138f.). The probabilities are also called a “measure
of degree of belief” and represent the people’s judgements that a proposition is in
alignment with e.g. reality or coherence (Baron, 2014, 8). Compared to SR, PR has
a continuous nature, a good performance and allows for uncertainty. Nevertheless,
this has the drawback that it is even less expressive as first order logic (Bottou, 2014,
138f.).

Following experiments which displayed the inadequacy of the mathematical ap-
proaches of Bayesian PR (Baron, 2014, 3), another form of reasoning was proposed:
heuristic reasoning. In HR, the judgement / reasoning process is biased and not all
available information is considered, which allows for robust and e�cient reasoning in
uncertain or labour-intensive situations (Gigerenzer and Brighton, 2009, 107). Heur-
istics can be imagined as “rules of thumb” (Baron, 2014, 3). A lot of heuristics such
as “Do no harm” (avoid and prevent harm) or “Status quo” (stick to the default)
were discovered (Baron, 2014, 14). Two major arguments for heuristics are worth
mentioning (Gigerenzer and Brighton, 2009, 110):

Accuracy-e↵ort trade-o↵ Information and computation cost time and e↵ort;
therefore, minds rely on simple heuristics that are less accurate than strategies
that use more information and computation.
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Less-is-more e↵ects More information or computation can decrease accuracy;
therefore, minds rely on simple heuristics in order to be more accurate than
strategies that use more information and time.

But, humans do not solely rely on heuristics. Another theory of reasoning worth
naming, although not mentioned earlier, is the prospect theory by Kahneman and
Tversky (1979, 288). It includes heuristics where the probabilities of decisions are
not given, which introduces a personal bias (Kahneman and Tversky, 1979, 289). A
kind of prospect theory is utility theory which states that people always choose to
increase their utility (Baron, 2014, 8). But compared to utility theory, prospect theory
allows for choices that do not increase the utility but include other considerations.

All previously presented di↵erent aspects of reasoning. For centuries, distinctions
between reasoning systems and approaches have been made: mainly the distinction
between rule-based and probabilistic reasoning systems, which each fulfil di↵erent
functions and explain specific behaviour (Sloman, 1996, 3). But to pinpoint one reas-
oning theory, which is more mighty and potentially leads to computational algorithms,
has not yet been achieved (Bottou, 2014, 139). Recent publications encourage includ-
ing di↵erent approaches and combine them to a single approach. Dual-process theory
(DPT) explains reasoning and JDM by a combination of two processes which share
properties with PR / HR (type 1 processes) and SR (type 2 processes) (Thompson,
2009, 171).

2.1 Dual-Process Theory

As shortly touched upon before, the dual-process theory describes two interacting
processes / systems with distinct cognitive set-ups and usually also di↵erent func-
tions (Ricco and Overton, 2011, 120). Processes of type 1 (P1) are fast, associative,
unconscious, biased, autonomous, driven by heuristics. They are emotionally a↵ected
and give a default response if they are not interrupted by a higher cognitive reason-
ing process (process of type 2). Whereas processes of type 2 (P2) are, on the other
hand, rather reflective, the opposite of P1, hypothetical, resource-intensive, slow and
conscious, ... (Baron, 2014, 18; Evans and Stanovich, 2013, 223).

To continue, it is important to define how the dual-process theory is understood
and used in this paper. There are many di↵erent interpretations and definitions of
dual systems (Evans and Stanovich, 2013, 224): dual processes, dual types, dual
systems, modes of processing, autonomous set of systems, ... In this paper, a com-
bination of dual processes and dual types is used. Dual processes often refer to and
are equated with dual types. It assumes that there are two forms of processing for
cognitive tasks. The terminology dual types “implies that the dual processes are
qualitatively distinct. Type 1 processes are (broadly) intuitive and Type 2 processes
reflective” (Evans and Stanovich, 2013, 225).
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2.1.1 Fast Thinking

Fast thinking is mostly done by P1. This process has a high capacity and works
independently of neither working memory nor cognitive abilities (Evans, 2011, 87).
Hence, it also does not require a lot of attention and works unconsciously. P1 is
highly associative and works in episodic and semantic or procedural memory (Ricco
and Overton, 2011, 120). Therefore, it is embedded in a highly problem-centered
context There are many biases which are probably caused by heuristics. These can
be avoided by learning or training and intervention of P2 (Baron, 2014, 19).

2.1.2 Slow Thinking

On the other hand, slow thinking is mostly executed by P2. P2 is described to
perform analytic, deductive, inductive, abductive tasks (Zhou, 2019, 1) and works
on a more abstract and context-unspecific, domain-general level and corresponding
representations (Ricco and Overton, 2011, 120). The process is resource-intensive,
controlled, conscious and limits cognitive abilities. Due to the dependence on cognit-
ive capabilities (Evans, 2011, 87), P2 is highly individual and correlated with intelli-
gence (Ricco and Overton, 2011, 120). It is supposed that P2 is the part of the mind,
distinguishing human behaviour from mere animal behaviour – enabling humans to
simulate and meta-represent content and override intuitions (Evans and Stanovich,
2013, 236). Essential to P2 seems to be the ability to abstract and decouple from
primary contextualised representations and keep secondary representations (Evans
and Stanovich, 2013, 237).

2.1.3 The Monitoring Process

Having two process types dealing with cognitive work necessarily raises the ques-
tion of how these are interdependent, work together and which processes or events
elicit a change of the process type (Sloman, 1996, 3; Thompson, 2009, 171). Psy-
chologically, recognition and reasoning in humans is rather entangled and not disjoin
(Zhou, 2019, 3). It is generally accepted that a – as Freud calls it – “primary pro-
cess thought” is succeeded by a secondary purposive thought (Sloman, 1996, 17). The
default-interventionist view claims that the default rapidly prompted P1 is intervened
by a reflective P2 (Evans and Stanovich, 2013, 237). Most reasoning is assumed to
take place as P1, but the crucial question is about the balance between P1 and P2,
since P2 usually is slower than P1 and intervening requires a temporal correspondence
(Oaksford and Chater, 2001, 356)

It seems that next to P1 and P2 a meta-cognitive judgement or second-order judge-
ment is needed to decide when to use P1 and when to switch to P2 (Thompson, 2009,
171, 190). This meta-cognitive judgement will further be referred to as monitor-

ing process (MP). It could observe and handle cognitive capacity and performance,
controlling and monitoring the processes and resources (Thompson, 2009, 191).

Thompson (2009, 175f.) describes di↵erent possible factors, which are judgements
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contributing to the MP such as:

Feeling of Rightness (FOR) A feeling that provides “a means to assess
the output of one’s cognitive processes and determine whether further action
should be taken. Under this view, the explanation for the compellingness of
many cognitive illusions is that the heuristic response is generated with a strong
intuition that the answer is correct.”

Feeling of Familiarity (FOF) The feeling one has if one e.g. recollects a
correct answer from memory. This phenomenon feels familiar.

Feeling of Knowing (FOK) The feeling that one knows something without
actually retrieving the knowledge.

Judgment of Learning (JOL) The judgement that one has correctly learned
something and will be able to accurately recall it later.

Fluency of Processing (FOP) There are various influencing factors such as
the aesthetic pleasure or the assessment of truth and influences the perception
of di�culty.

The author suggests that the individuals di↵er regarding their MP-skills (Thompson,
2009, 180), which implies that the individual di↵erences supposed in P2-capacities
are not necessarily given, but could be a consequence of the di↵erences in their MP-
abilities. Another consequence is that a strong FOR correlates with the acceptance
of P1’s heuristic results whereas a low FOR starts the P2 process (Thompson, 2009,
179).

2.2 Challenges

One challenge the dual-process theory has to face is that the processes merely
describe process styles and are not clearly defined. Furthermore, they are yet un-
mapped to actual neural processes in the brain and the clustering of labels for the
processes take place while there might be flowing transitions (Evans and Stanovich,
2013, 226f.). Another problem is that the processes are competing: since P1 is faster
than P2, it is questionable how P2 can interrupt P1. An MP would lessen this prob-
lem, but it would nevertheless require parallel processing and a temporal connection
(Evans and Stanovich, 2013, 237). Another general problem is, that a lot of reasoning
theories are normative but therefore inadequate, whereas a computationally feasible
model requires a descriptive but applicable model (Elqayam and Evans, 2011, 233,
248; Gigerenzer and Sturm, 2012, 244).

3 Machine Reasoning

After taking a look at the theoretical dual-process framework for reasoning, the
current state of research concerning MR and ML is outlined. The dual-process the-
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ory is a descriptive theory aiming to explain how people reason, judge and decide.
It is formulated in cognitive psychology and composed of heuristics, strategies and
mathematical models (Baron, 2014, 5). Current attempts at machine reasoning try
to combine “the precision and productive power of symbolic rules with the learning,
automatic generalization, and constraint satisfaction power of connectionist associ-
ations” (Sloman, 1996, 19) just like the dual-process theory tries to join P1 and P2.

3.1 Approaches and Methods

Since there is a lot of research done in this area, a lot of di↵erent approaches are
evaluated and studied. There are various attempts to implement machine reasoning
(Duan et al., 2020, 1). They di↵er not only in their implementation, but also in their
definition of reasoning and the reasoning questions they aim to answer. Bottou (2014,
133), for example, defines reasoning as: “algebraically manipulating [of] previously
acquired knowledge in order to answer a new question”. Three types of explanations
given by AI systems can be di↵erentiated (Cyras et al., 2020, 46): Attributive ex-

planations which explain why an AI system returns a specific output given a specific
input concerning its association and attribution of the system with the output. Con-
trastive explanations explain why an AI system choses one output in comparison to
another ouput, reasoning for and against the alternative outputs. Actionable explan-

ations are explanations about what the user of the system can do di↵erently to get
another output. Thus, a direct comparison is di�cult, but in the following, di↵erent
approaches will be listed. In general, machine reasoning aims to build an explainable
and interpretable AI system (Duan et al., 2020, 1). The goal is to connect lower-level
information processing (which is strongly data-driven and comparable to recognition)
and high-level abstract representations (which are knowledge-driven and comparable
to cognition) (Garcez et al., 2019, 1).

Various di↵erent approaches have been proposed and published2 (Duan et al.,
2020, 1):

Corresponding to symbolic reasoning theories, there are symbolic reasoning

methods which use symbolic logic to represent and argue with knowledge.
Used algorithms are e.g. the truth-table approach, inference rules, resolution,
non-monotonic logical reasoning, forward and backward chaining, probabilistic
logic programming (PLP) and statistical relational learning (SRL) (Zhou, 2019,
1). They cannot well handle uncertainty, although PLP and SRL are attempts
to bridge between symbolic and probabilistic approaches.

The counterpart to probabilistic reasoning theories are the probabilistic reas-

oning methods which mainly use probabilities, but partly also a bit of sym-
bolic logic. They can deal with uncertainty and can be easily interpreted, but
in large spaces these methods lead to combinatorial explosion and are inflex-
ible due to the discrete and finite symbolic representation. Used algorithms are
Bayesian Networks or the Markov Logic Network.

2this list does not claim to be complete
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Another form of machine reasoning are neural-symbolic reasoning meth-

ods. Here, knowledge symbols are represented as mathematical representations
(like vectors and tensors) to permit large and e↵ective learning because the
components are di↵erentiable. A drawback is that it is not easily interpretable.
Nevertheless, the system is more readable than black-box neural networks, be-
cause it usually realises inferences as a chain of modules which allows seeing the
time-line of di↵erent functions which were called.

Compared to all previously mentioned methods, neural-evidence reasoning

methods allow for communication to the outside environment and thus learn
and search for evidence for reasoning outside the scope of the model. They are
least developed.

Another aspect – not much considered in the methods above – is commonsense
reasoning. As outlined in the introduction of the paper, humans evaluate the reasons
and actions of others as rational or irrational with the purpose of distinguish correct-
ness and incorrectness of reasoning processes. But most of the time, this happens
unconsciously in form of commonsense knowledge and evaluation (Chater and Oaks-
ford, 2000, 93f.) and seems trivial to humans (Sap et al., 2019, 3027). Moreover,
human-level performance will only be reached by basic knowledge of the world (Davis
and Marcus, 2015, 92). If machines reason, they also have to comply to these “un-
written rules” of common sense humans share. A recent proposal for commonsense
reasoning was published by Sap et al. (2019, 3027). They aim for “simple and ex-
plainable commonsense reasoning” which exceeds task-specific correlations (Sap et al.,
2019, 3027).

Moreover, also relevant for MR is grounding. Previously mentioned approaches
were all based on existing knowledge bases – often engineered by hand by experts or
large communities (Davis and Marcus, 2015, 92) – and a properly defined problem.
But in real-world applications of reasoning, the pipeline of machine reasoning contains
more than just reasoning about the knowledge. For understanding visual scenes or
spoken text, the content first has to be grounded – extracting the needed information
and translating them to the correct representation so that the machine is able to
reason at all (Zellers et al., 2019, 6721). Reasoning can also help to improve the
performance of grounding by checking for coherence and generalise over di↵erent
domains (Sridharan and Mota, 2022, 1, 32).

3.2 Limitations

There already are a lot of approaches and methods to realise MR, but they are all
still limited. Although there are few forms of (commonsense) reasoning or domain-
specific reasoning, progress has been very slow. The techniques used are not yet
su�cient (Davis and Marcus, 2015, 92). As indicated before, each method is relat-
ively domain-specific and focuses on fixed knowledge (Cyras et al., 2020, 46). Most
e↵orts focused on a knowledge of “what” and less on e.g. procedural knowledge
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of “how” (Sap et al., 2019, 3033). Additionally, there is a dilemma between inter-
pretability and performance, similar to the trade-o↵ compensated by heuristics in P1.
Black-box systems are much more performant compared to abstract, generalised and
interpretable systems (Duan et al., 2020, 1f.).

Apart from the problem that representation and inference rules first have to be
realised e�ciently, not every knowledge can be formulated at the appropriate level
of abstraction and much knowledge is implicit (Davis and Marcus, 2015, 98). For
example, a robot housekeeper should realise that the pet of the child (a rat) is not
a vermin, but a pet loved by the child, but that the rat running around in the
kitchen is not the same and is a vermin. Since commonsense reasoning is very natural
to humans and happens unconsciously and automatically, it is very di�cult to get
conscious access to it (Chater and Oaksford, 2000, 94; Davis and Marcus, 2015, 97).
A well-known problem, the frame problem describes the di�culty to break down the
knowledge to an adequate level (Chater and Oaksford, 2000, 94). The integration of
recognition and cognition requires complex inferences, which state-of-the-art-systems
are still struggling with (Zellers et al., 2019, 6721).

Lastly, the monitoring process imposes a big challenge for machine reasoning.
Just as for the cognitive-psychological reasoning models, the approaches to machine
reasoning have not yet much discussed and researched how this “middle layer, already
a form of reasoning, but not yet formal or logical” could be realised and when it
intervenes (Bottou, 2014, 134).

4 Proposals to Advance Machine Reasoning

After summarising the current state of reasoning research and machine reasoning,
this section will propose some approaches to advance machine reasoning. They are
inspired by the DPT of reasoning, as well as they incorporate / integrate state-of-
the-art algorithms and approaches to ML and MR. As indicated in the beginning,
the dual-process approach as basis for the proposals is chosen, because until now
it captures human reasoning best by its descriptive nature. To better understand
the suggestions, the process of face recognition is chosen exemplary to explain the
interworking of the processes.

In accordance to the DPT, there should be two di↵erent kinds of processes which
di↵er in their main features, although there are no strict borders between the process
types. Thus, specific algorithms or models are not designated to one process type.

The first process type is like P1 and contains heuristic and probability methods.
Additionally, where applicable, it could also contain some form of short-term memory
or – computationally spoken – cache which adds a strong bias to the most recent res-
ults or ideas. In humans, very recently acquired knowledge also dominates. Hence,
the system is strongly biased and very fast as P1. Given the example of face recog-
nition, neural networks could retrieve the name of a face. Similarly to human face
recognition, there is no long reasoning process required.
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Following this approach, this implies that P1 are realised by algorithms which act
as a black-box and do not allow for traceability, understandability and explainability.
Furthermore, the result can be very irrational like recognising a dead person in the
face of a living person. Depending on the algorithm used, the answers can not be
retraced and even more, not even a decision pattern can be detected, leaving a very
untrustworthy random impression.

So what about these aspects which are currently the strongest motivation to in-
crease machine reasoning abilities? As for humans, we could engage more thorough
decision making and reasoning in machines if confronted with a question. If a person
identifies a person wrongly or does not recognise the person, others will ask about the
person’s features like e.g. “Did you not see his red curly hair?” or “Why did you think
it was Sam?”. These are obvious situations to engage P2. The same could be valid for
machines. Their P2 would entail commonsense knowledge, be deductive or inductive
and work on traceable and understandable symbolic reasoning processes. Just like
reasoning with P2 in humans requires a lot of resources, P2 is resource-intensive and
slow in machines. One important feature has to be, that these processes have to
be able to explain P1. But this does not require the P1 to be understandable. In
the given example of face recognition, an answer to not recognising a person could
be “[name] looks very di↵erent than I remember” or “I saw [name of other person]
very often and mistook [name of other person] for [name of seen person]”. In terms
of human-machine interaction, these arguments would represent a su�cient explan-
ation. Furthermore, in regard to future development, the gained knowledge and the
finding of these P2 could influence the training and learning of P1 in a meta-cognitive
and reflective way.

Does this mean that every cognitive process is, by default, a P1 and P2 is only
activated upon question? No, there still is and has to be a monitoring processes,
switching between P1 and P2. This is the area which is still the least researched.
Therefore, these proposals are only starting points, hoping that they will enrich and
advance the debate and research in the transition between P1 and P2.

Thompson (2009) described various feelings like the feeling of familiarity or know-
ing, which could determine the likeliness and the certainty with which humans answer
with P1 or whether they engage P2. Many algorithms which would fall under P1
and act like black-boxes are probability based. Therefore, the result is a probability
which can be used as a measure of certainty, and, if too low, lead to an engagement
of P2. Since humans expect “rational behaviour” which folk-psychologically can be
described as coherent and consistent behaviour, commonsense knowledge can be used
to check P1’s decisions / results. Commonsense knowledge and reasoning can also
trigger P2, if reality and expectation mismatch. An example would be if P1 during
face recognition comes to the result that the face belongs to a dead person. The
commonsense knowledge, that the person is dead, would highlight an incongruence
between expectation and reality as well as be inconstant with the knowledge, that
dead people cannot walk around. As a consequence, this would start P2. Another
reason for P2 activation is if P1 cannot deal with the cognitive input. But the timing
problem of P1, P2 and the monitoring problem remains.
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To summarise, these are first ideas in the hope that they can build a foundation
for further research and discussions how machine reasoning can be improved and
should develop in future in accordance with and based upon the dual-process theory
of human reasoning. They feature two main types of processes which are monitored
and controlled by another process and parameters like coherence or certainty.

5 Conclusion, Implications and Outlook

Integrating reasoning in attempts to produce advanced intelligent systems is relev-
ant for current and future research. It finds application in many real-world scenarios
like expert systems and diagnosis (medical, mechanical, ...), knowledge base com-
pletion, human-machine interaction, fact checking, search, ... (Duan et al., 2020, 3)
Interdisciplinary work is key to understand the cognitive processes and techniques
and to be able to implement them without necessarily replicating them (Davis and
Marcus, 2015, 103). Currently, the dual-process theory best reflects human reasoning,
although it mainly on a descriptive level, lacking information about the monitoring
process and transition between the two process types. If reasoning should be im-
plemented in machines to achieve advanced intelligent technologies, using the dual-
process theory as basis is obvious. Until now most approaches in machine reasoning
resemble the development of research in cognitive science with current attempts to
bridge between symbolic and probabilistic methods. Nevertheless, the approaches
aim at explaining all processes. A new approach, which this paper o↵ers, is to accept
unexplainable, untraceable, biased processes. The only drawback in implementing
biased machines is the human attitude in the infallibility of computers. Otherwise,
humans are used to biased and heuristical behaviour in other humans: It seems
that usually cognitive processes happen unconsciously and without logical inferences
(Bottou, 2014, 140), which indicates that machines do not need to exclusively have
explainable processes.

Most problematic and di�cult is the design of the monitoring process. This paper
raises first ideas such as coherence or certainty as indicators that P2 engagement is
required, but with continuing research in cognitive science as well as artificial intel-
ligence, the design and description of the monitoring process will probably become
more certain. Another open aspect is that not much is known about social reasoning
and rationality. In future scenarios where machines might also work together with
humans in social settings, rationality and reasoning in social settings becomes very im-
portant. These cognitive processes seem to di↵er from individual reasoning (Knau↵
and Spohn, 2021, 51). Further research in meta-cognitive and reflective processes
could also enhance the influence of P2 on P1.

To summarise, the current development in the area of machine reasoning indicates
that human-like reasoning is still far away. Further research in cognitive science as
well as artificial intelligence, machine reasoning and machine learning is required to
address the dichotomy of the processes and their interplay. Very domain-specific
reasoning is getting better, but general (commonsense) reasoning still has a long way
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to go. Main advances need to be made concerning the di↵erence and interplay of both
processes. This could then build a good foundation for computational feasibility and
an implementation of reasoning in machines.
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